Answers to Chapter 2 Exercises

Exercise 3. Show that \(\{1, 2, 3\} \) under multiplication modulo 4 is not a group but \(\{1, 2, 3, 4\} \) under multiplication modulo 5 is a group.

Proof. In the first situation, we note that \(2 \times 2 = 0 \pmod{4} \) and that \(0 \notin \{1, 2, 3\} \). Thus the binary operation is not closed. (Alternately, show that 2 does not have an inverse.)

In the second situation, we note that multiplication modulo \(n \) is associative for all \(n \). Clearly, 1 serves as the identity. And

\[
\begin{align*}
1 \times 1 &= 1 \pmod{5} \\
2 \times 3 &= 1 \pmod{5} \\
4 \times 4 &= 1 \pmod{5}
\end{align*}
\]

establishes the existence of inverses for each element. Ergo, the set and operation satisfy the definition of group. \(\square \)

Exercise 12. For any integer \(n > 2 \), show that there are at least two elements in \(U(n) \) that satisfy \(x^2 = 1 \).

Proof. We begin by showing that two elements exist in \(U(n) \), namely 1 and \(n - 1 \). Clearly, \(\gcd(n, 1) = 1 \) for all \(n \) since 1 is its only divisor. Using the Euclidean Algorithm, we see that

\[
\gcd(n, n - 1) = \gcd(n \mod n - 1, n - 1) = \gcd(1, n - 1) = 1.
\]

Thus, \((n - 1) \in U(n) \), and for \(n > 2 \), \(n - 1 \) is distinct from 1.

Now we observe the following:

\[
1^2 = 1 \pmod{n}
\]

and

\[
(n - 1)^2 = n^2 - 2n + 1 = 0 - 0 + 1 = 1 \pmod{n}
\]

Thus, at least two elements of \(U(n) \) satisfy the given equation. \(\square \)

Exercise 25. Suppose the table below is a group table. Fill in the blank entries.

Solution. We will make use of the identity element \(e \) to fill in the first row and first column. We then use the Latin square property noted in Exercise 23 to complete row and columns that have one blank.

<table>
<thead>
<tr>
<th></th>
<th>(e)</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(e)</td>
<td>(e)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
</tr>
<tr>
<td>(a)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
</tr>
<tr>
<td>(b)</td>
<td>(b)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(a)</td>
</tr>
<tr>
<td>(c)</td>
<td>(c)</td>
<td>(d)</td>
<td>(e)</td>
<td>(a)</td>
<td>(b)</td>
</tr>
<tr>
<td>(d)</td>
<td>(d)</td>
<td>(e)</td>
<td>(a)</td>
<td>(b)</td>
<td>(c)</td>
</tr>
</tbody>
</table>